The most important age-related change in the red cell parameters was a rise in red cell count and hemoglobin concentration during the neonatal period. count; absolute lymphocyte, eosinophil, monocyte, and neutrophil counts; platelet count; mean platelet volume; and total serum protein. The most significant age-related change in the red cell parameters was a rise in red cell count and hemoglobin concentration during the neonatal period. This is in contrast to what is reported for other ruminants, including European cattle breeds where the neonatal period is marked by a fall in the red cell parameters. There is a need to establish breed-specific reference ranges for blood parameters for indigenous cattle breeds. The possible role of the postnatal GNF179 Metabolite rise in the red cell parameters in the adaptability to environmental constraints and innate disease resistance warrants further research into the dynamics of blood cell parameters of these breeds. not stated aRange not reported bDuring wet season cRange Table 2 Reported mean packed cell volume (in percent) of various European cattle breeds (Pasvol et al. 1976; Nagel 1990). In areas where malaria is endemic, there is a high frequency in the genes for these hemoglobinopathies in the local human populations. Prolonged production of Hb F in humans has also been described in neonates under hypoxic stress (Shiao and Ou 2006). The production of Hb F is also pharmacologically induced in the treatment of sickle cell anemia. Anemia is an important hematological manifestation of most endemic blood-borne diseases of cattle in the tropics, including anaplasmosis, babesiosis, and trypanosomosis. Western Kenya is an ECF endemic region, and the calves in this study were shown to be exposed to and become infected with several of the tick-borne pathogens and trypanosomes from a very early age. East African short-horn zebus are considered to be disease resistant, however, particularly against tick-borne diseases. Further diagnostic tests are required to determine whether delayed switching between hemoglobin types can explain the postnatal rise in HGB in this breed, but it makes for interesting speculation whether prolonged postnatal production of Hb F plays any part in the innate resistance of zebu calves against blood-borne pathogens during early calfhood. Compared to published ranges for European cattle breeds (Knowles et al. 2000; Mohri et al. 2007), TSP in these short-horn zebu calves was considerably elevated during the entire monitoring period, but is comparable to ranges reported for other African zebu breeds (Useh et al. 2008). One possible explanation for higher TSP compared to European breeds is a high level of antigenic stimulation resulting in high globulin levels. Even from an early age, exposure to pathogens is considerable under field conditions in the tropical environment. Unfortunately only total serum proteins were investigated. Without distinguishing between different proteins, in particular albumin and the various immunoglobulins, it is difficult to come to any conclusions with regard to the levels and trends of TSP levels in the calves in this study. Despite its economical Mouse monoclonal to HRP importance as the main cattle breed not only in Kenya, but in all of eastern Africa, little is known GNF179 Metabolite about baseline values of health parameters of the East African short-horn zebu. There is a need to GNF179 Metabolite establish breed-specific reference ranges for blood parameters for this breed. It is evident from this study that baseline values differ with age, particularly in the neonate, and possibly contributes to the physiological adaptability to environmental constraints and disease resistance of this breed. When one compares the age-related changes in the red blood cell parameters for the calves in this study to the reported values for other cattle breeds (Knowles et al. 2000; Mohri et al. 2007), there are considerable differences in both the ranges for different age groups, as well as the trends in change over time. The reference ranges for European breeds were established in cattle in environments that are controlled for disease and nutrition. For this reason a direct comparison to the East African short-horn zebu in this study is problematic to interpret, but it is of value since the physiology of age-related changes in these breeds has been studied more extensively than in indigenous African breeds. The changes in the red blood cell parameters of the calves under study, especially during the neonatal period, are not explained by what is known about the physiology of other cattle breeds. This warrants further research into the dynamics of blood cell.